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RCR, or Robust Chauvenet Rejection, is advanced, and easy to use, outlier rejection. Originally published in Maples
et al. 2018, this site will show you how to use RCR in Python. RCR can be applied to weighted data and used for
model-fitting, and we have incorporated rejecting outliers in bulk to have the best of both computational efficiency and
accuracy (see the Installation Guide).

RCR has been carefully calibrated, and extensively simulated. It can be applied to samples with both large contam-
inants and large contaminant fractions (sometimes in excess of 90% contaminated). Finally, because RCR runs on a
C++ backend, it is quite fast.

User Guide 1

https://rcr.readthedocs.io/en/latest/?badge=latest
https://travis-ci.com/nickk124/RCR
https://arxiv.org/abs/1807.05276
https://zenodo.org/badge/latestdoi/246971427
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CHAPTER 1

Introduction

The simplest form of outlier rejection is sigma clipping, where measurements that are more than a specified number
of standard deviations from the mean are rejected from the sample. This number of standard deviations should not be
chosen arbitrarily, but is a function of your sample’s size. A simple prescription for this was introduced by William
Chauvenet in 1863. Sigma clipping plus this prescription, applied iteratively, is what we call traditional Chauvenet
rejection.

However, both sigma clipping and traditional Chauvenet rejection make use of non-robust quantities: the mean and the
standard deviation are both sensitive to the very outliers that they are being used to reject. This limits such techniques
to samples with small contaminants or small contamination fractions.

Robust Chauvenet Rejection (RCR) instead first makes use of robust replacements for the mean, such as the median
and the half-sample mode, and similar robust replacements that we have developed for the standard deviation.
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CHAPTER 2

Basic Usage Example

Here’s a quick example of RCR in action: we have a dataset of 𝑁 = 1000 measurements, 85% of which are contami-
nants. The contaminants are sampled from one side of a Gaussian/normal distribution with standard deviation 𝜎 = 10,
while the uncontaminated points are from a regular, symmetric Gaussian with 𝜎 = 1. Both distributions are centered
at 𝜇 = 0.

The question is, how can we recover the 𝜇 and 𝜎 of the underlying distribution, in the face of such heavy contamina-
tion? The example below shows how to do it with RCR.

import numpy as np
import rcr

np.random.seed(18318) # get consistent random results

N = 1000 # total measurement count
frac_contaminated = 0.85 # fraction of sample that will be contaminated

# symmetric, uncontaminated distribution
mu = 0
sigma_uncontaminated = 1
uncontaminated_samples = np.random.normal(mu, sigma_uncontaminated,

int(N * (1 - frac_contaminated)))

# one-sided contaminants
sigma_contaminated = 10
contaminated_samples = np.abs(np.random.normal(mu, sigma_contaminated,

int(N * frac_contaminated)))

# create whole dataset
data = np.concatenate((uncontaminated_samples, contaminated_samples))
np.random.shuffle(data)

# perform RCR
# initialize RCR with rejection technique:
# (chosen from shape of uncontaminated + contaminated distribution)

(continues on next page)
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(continued from previous page)

r = rcr.RCR(rcr.LS_MODE_68)
r.performBulkRejection(data) # perform outlier rejection

# View results
cleaned_data = r.result.cleanY
cleaned_mu = r.result.mu
cleaned_sigma = r.result.stDev

# plot data
import matplotlib.pyplot as plt

ydata = np.random.uniform(0, 1, N) # project randomly into 2D for better visualization
plt.figure(figsize=(8,5))
ax = plt.subplot(111)
ax.plot(data, ydata, "k.", label="Data pre-RCR", alpha=0.75, ms=4)
ax.plot(cleaned_data, ydata[r.result.indices], "bo",

label="Data post-RCR", alpha=0.4, ms=4)

# plot results
cont_mean = np.mean(data)
cont_sigma = np.std(data)

ax.axvspan(mu - sigma_uncontaminated, mu + sigma_uncontaminated, color='g',
alpha=0.25, label="1-$\sigma$ region of true\nuncontaminated distribution")

ax.axvline(x=cont_mean, c='r', lw=3, ls="-", alpha=0.75,
label="Pre-RCR sample mean of data")

ax.axvspan(cont_mean - cont_sigma, cont_mean + cont_sigma, color='r',
fill=False, alpha=0.75, hatch="/", label="1-$\sigma$ region of data, pre-RCR")

ax.axvline(x=cleaned_mu, c='b', lw=3, ls="-", alpha=0.75,
label="RCR-recovered $\mu$ of\nuncontaminated distribution")

ax.axvspan(cleaned_mu - cleaned_sigma, cleaned_mu + cleaned_sigma, color='b',
fill=False, alpha=0.75, hatch= '\\',
label="1-$\sigma$ region of uncontaminated\ndistribution, after RCR")

plt.xlim(-5, 30)
plt.ylim(0, 1)
plt.xlabel("data")
plt.title("Results of RCR being used on an" +

" {}% contaminated dataset".format(frac_contaminated*100))
plt.yticks([])

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])

ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()

Output:
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For a more in-depth explanation of using RCR for this type of one-dimensional outlier rejection, see Rejecting 1D
Outliers.
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CHAPTER 3

License and Attribution

3.1 The Paper

The original paper for RCR can be found here. If you use RCR, please cite it as:

@article{maples2018robust,
title={Robust Chauvenet Outlier Rejection},
author={{Maples}, M.P. and {Reichart}, D.E. and {Konz}, N.C. and {Berger}, T.A.

→˓and {Trotter}, A.S. and {Martin}, J.R. and {Dutton}, D.A. and {Paggen}, M.L. and
→˓{Joyner}, R.E. and {Salemi}, C.P.},

journal={The Astrophysical Journal Supplement Series},
volume={238},
number={1},
pages={2},
year={2018},
publisher={IOP Publishing}

}

and use it according to the license (the essential point here is just to contact us if you want to use RCR for commercial
purposes).

3.1.1 Installation Guide

Python

Linux and macOS

The easiest way to install RCR into Python is with pip:

python3 -m pip3 install rcr

That’s it; you’re good to go from here!

9
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Windows

Before installing, you’ll need to have Microsoft Visual C++ 14.0, found under the Microsoft Visual C++ Build Tools.
If that doesn’t work, you may need the latest Windows SDK. (Both can be installed through the Visual Studio Installer.)

From here, install via pip from the terminal as usual:

python3 -m pip3 install rcr

(If you tried to install via pip without first installing the above requirements, pip would probably tell you to do so.)

C++

Because the RCR Python library uses pybind11 to wrap the original C++ source code seamlessly into Python, all of
the speed of C++ is available through the Python library. However, if the C++ source code is desired, it can be found at
the Github repository in the src directory (RCR_python.cpp is only used for wrapping the C++ code into the rcr
Python library, so it can be ignored). Documentation specific to the C++ codebase can be found within the directory
docs/cpp_docs of this repository.

3.1.2 Frequently Asked Questions

What is Bulk Rejection?

The RCR algorithm is iterative; without bulk rejection, only one outlier is rejected per iteration. With bulk
rejection, multiple outliers can be rejected per iteration, with hardly any negative effect on final results.
This creates a huge speed-up, especially for large datasets. See Section 5 of The Paper for more info.

3.1.3 API Reference

RCR (Robust Chauvenet Outlier Rejection) Package API Details.

class rcr.FunctionalForm
class. Class used to initialize functional form/model-fitting RCR (see Rejecting Outliers While Model Fitting).

Constructor arguments:

Parameters

• f (function) – Model function 𝑦(�⃗�|𝜃) to fit data to while performing outlier rejection,
where �⃗� is an 𝑛-dimensional list/array_like (or float, for 1D models) of independent vari-
ables and 𝜃 is an 𝑀 -dimensional list/array_like of model parameters. Arguments for f must
follow this prototype:

param x Independent variable(s) of model

type x float or 1D list/array_like

param params Parameters of model

type params list/array_like, 1D

returns y – Model evaluated at the corresponding values of x and params.

rtype float

10 Chapter 3. License and Attribution
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• xdata (list/array_like, 1D or 2D) – 𝑛-dimensional independent variable data
to fit model to. For 1D models (𝑛 = 1), this will be a 1D list/array_like, while for 𝑛-D
models, this will be a 2D list/array_like where each entry is a list/array_like of length 𝑛.

• ydata (list/array_like, 1D) – Dependent variable (model function evaluation)
data to fit model to.

• model_partials (list of functions) – A list of functions that return the partial
derivatives of the model function f with respect to each, ordered, model parameter 𝜃 (See
Rejecting Outliers While Model Fitting for an example). Arguments for each one of these
functions must follow this prototype (same as for the model function f):

param x Independent variable(s) of model

type x float or 1D list/array_like

param params Parameters of model

type params list/array_like, 1D

returns y – Derivative of model (with respect to given model parameter), evaluated at
the corresponding values of x and params.

rtype float

• guess (list/array_like, 1D) – Guess for best fit values of model parameters 𝜃 (for
the fitting algorithm).

• weights (list/array_like, optional, 1D) – Optional weights to be applied
to dataset (see Weighting Data).

• error_y (list/array_like, optional, 1D) – Optional error bars/𝑦-
uncertainties to be applied to dataset (see Data with Uncertainties and/or Weights).

• tol (float, optional) – Default: 1e-6. Convergence tolerance of modified Gauss-
Newton fitting algorithm.

• has_priors (bool, optional) – Default: False. Set to True if you’re going to
apply statistical priors to your model parameters (see Applying Prior Knowledge to Model
Parameters (Advanced); you’ll also need to create an instance of rcr.Priors and set the
priors attribute of this instance of FunctionalForm equal to it).

• pivot_function (function, optional) – Default: None. Function that returns
the pivot point of some linearized model (see pivots). Must be of the form/prototype of:

param xdata 𝑛-dimensional independent variable data to fit model to; same as
above‘‘xdata‘‘.

type xdata list/array_like, 1D or 2D

param weights Optional weights to be applied to dataset (see Weighting Data).

type weights list/array_like, optional, 1D

param f Model function; same as above f.

type f function

param params Parameters of model

type params list/array_like, 1D

returns

3.1. The Paper 11
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– pivot (float or 1D list/array_like) – Pivot point(s) of the model; (float if you’re
using a one-dimensional model/independent variable, list/array_like if 𝑛-
dimensional.)

– However, note that all arguments need to be actually used for the pivot point
computation. For example,

– a simple linear model 𝑦(𝑥|𝑏,𝑚) = 𝑏 + 𝑚(𝑥 − 𝑥𝑝) has a pivot point found by
𝑥𝑝 =

∑︀
𝑖 𝑤𝑖𝑥𝑖/

∑︀
𝑖 𝑤𝑖, where

– 𝑤𝑖 are the weights of the datapoints.

• pivot_guess (float or 1D list/array_like, optional) – Initial guess
for the pivot point(s) of the model (float if you’re using a one-dimensional
model/independent variable, list/array_like if 𝑛-dimensional; see pivots).

pivot_function
Function used to evaluate pivot point(s) (see pivot_function optional argument of rcr.
FunctionalForm model constructor).

priors
rcr.Priors object. Object describing parameter prior probability distribution(s) applied to rcr.
FunctionalForm model (see rcr.Priors).

To use priors on model parameters for some rcr.FunctionalForm model, this attribute of the model
needs to be initialized as some instance of rcr.Priors (see Applying Prior Knowledge to Model Pa-
rameters (Advanced)).

result
rcr.FunctionalFormResults object. Access various results unique to Functional Form RCR with
this (see rcr.FunctionalFormResults).

class rcr.FunctionalFormResults
Results from (and unique to) functional form/model-fitting RCR.

parameter_uncertainties
list of floats. Best-fit model parameter uncertainties, post-outlier rejection.

For example, if you’re fitting to some linear model 𝑦(𝑥|𝑏,𝑚) = 𝑏 + 𝑚𝑥, and you obtain a best fit of
𝑏 = 1.0± 0.5 and 𝑚 = 2± 1, then parameter_uncertainties = [0.5, 1].

Note that in order for parameter uncertainties to be computed, either/both weights and data error
bars/uncertainties must have been provided when constructing the rcr.FunctionalForm model.

parameters
list of floats. Best-fit model parameters, post-outlier rejection.

For example, if you’re fitting to some linear model 𝑦(𝑥|𝑏,𝑚) = 𝑏+𝑚𝑥, and you obtain a best fit of 𝑏 = 1
and 𝑚 = 2, then parameters = [1, 2].

pivot
float. Recovered optimal “pivot” point for model that should minimize correlation between the slope and
intercept parameters of the linearized model (1D independent variable case).

See pivots. For example, the pivot point for the model 𝑦(𝑥|𝑏,𝑚) = 𝑏+𝑚(𝑥− 𝑥𝑝) is 𝑥𝑝.

pivot_ND
float Recovered optimal 𝑛-dimensional “pivot” point for model that should minimize correlation between
the slope and intercept parameters of the linearized model (𝑛-D independent variable case).

See pivots. For example, the pivot point for the 𝑛-dimensional model 𝑦(�⃗�|⃗𝑏, �⃗�) = �⃗�+ �⃗�𝑇 (�⃗�− �⃗�𝑝) is �⃗�𝑝.
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class rcr.Priors
class. Class that encapsulates probabalistic priors to be applied to model parameters when using model-
fitting/functional form RCR (see Applying Prior Knowledge to Model Parameters (Advanced) for an example).

Constructor arguments:

Parameters

• priorType (rcr.priorsTypes) – The type of priors that you’re applying to your
model (see rcr.priorsTypes and Types of Model Parameter Priors in RCR).

• p (function, optional 2nd argument) – Custom priors function; takes in a
vector of model parameters and returns a vector of the prior probability density for each
value (see Applying Prior Knowledge to Model Parameters (Advanced) for an example).

• gaussianParams (2D list/array_like, optional 2nd argument) –
A list that contains lists of mu and sigma for the Gaussian prior of each param. If no prior,
then just use NaNs (see Applying Prior Knowledge to Model Parameters (Advanced) for
an example).

• paramBounds (2D list/array_like, optional 2nd argument (or 3rd, for the case of rcr.
MIXED_PRIORS)) – A list that contains lists of the lower and upper hard bounds of each
param. If not bounded, use NaNs, and if there’s only one bound, use NaN for the other
bound (see Applying Prior Knowledge to Model Parameters (Advanced) for an example).

gaussianParams
2D list/array_like of floats. A list that contains lists of mu and sigma for the Gaussian prior of each param.
If no prior, then just use NaNs (see Applying Prior Knowledge to Model Parameters (Advanced) for an
example).

p
function. Custom priors function; takes in a vector of model parameters and returns a vector of the prior
probability density for each value (see Applying Prior Knowledge to Model Parameters (Advanced) for
an example).

paramBounds
2D list/array_like of floats. A list that contains lists of the lower and upper hard bounds of each param. If
not bounded, use NaNs, and if there’s only one bound, use NaN for the other bound (see Applying Prior
Knowledge to Model Parameters (Advanced) for an example).

priorType
rcr.priorsTypes object. The type of priors that you’re applying to your model (see rcr.
priorsTypes and Types of Model Parameter Priors in RCR).

class rcr.RCR
Master class used to initialize and run RCR outlier rejection procedures.

performBulkRejection(*args, **kwargs)
Overloaded function.

1. performBulkRejection(self: rcr.RCR, data: List[float]) -> None

Perform outlier rejection WITH the speed-up of bulk pre-rejection (see What is Bulk Re-
jection?).

Parameters:

data [list/array_like, 1D] Dataset to perform outlier rejection (RCR) on. Access results
via the result attribute (rcr.RCRResults) of your instance of rcr.RCR.

2. performBulkRejection(self: rcr.RCR, weights: List[float], data: List[float]) -> None

3.1. The Paper 13
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Perform outlier rejection WITH the speed-up of bulk pre-rejection (see What is Bulk Re-
jection?).

Parameters:

weights [list/array_like, 1D] Weights for dataset to perform outlier rejection (RCR) on.

data [list/array_like, 1D] Dataset to perform outlier rejection (RCR) on. Access results
via the result attribute (rcr.RCRResults) of your instance of rcr.RCR.

performRejection(*args, **kwargs)
Overloaded function.

1. performRejection(self: rcr.RCR, data: List[float]) -> None

Perform outlier rejection WITHOUT the speed-up of bulk pre-rejection (slower; see What
is Bulk Rejection?).

Parameters:

data [list/array_like, 1D] Dataset to perform outlier rejection (RCR) on. Access results
via the result attribute (rcr.RCRResults) of your instance of rcr.RCR.

2. performRejection(self: rcr.RCR, weights: List[float], data: List[float]) -> None

Perform outlier rejection WITHOUT the speed-up of bulk pre-rejection (slower; see What
is Bulk Rejection?).

Parameters:

weights [list/array_like, 1D] Weights for dataset to perform outlier rejection (RCR) on.

data [list/array_like, 1D] Dataset to perform outlier rejection (RCR) on. Access results
via the result attribute (rcr.RCRResults) of your instance of rcr.RCR.

result
rcr.RCRResults object. Access various results of RCR with this (see rcr.RCRResults).

setParametricModel(self: rcr.RCR, model: FunctionalForm)→ None
Initialize parametric/functional form model to be used with RCR (see Rejecting Outliers While Model
Fitting for a tutorial).

Parameters model (rcr.FunctionalForm) – 𝑛-dimensional model to fit data to while
performing outlier rejection.

setRejectionTech(self: rcr.RCR, rejection_technique: rcr.RejectionTechniques)→ None
Modify/set outlier rejection technique to be used with RCR.

See Table of Rejection Techniques for an explanation of each rejection technique, and when to use it.

Parameters rejection_technique (rcr.RejectionTechniques) – The rejec-
tion technique to be used with your instance of rcr.RCR.

class rcr.RCRResults
Various results from performing outlier rejection with RCR.

cleanW
list of floats. The user-provided datapoint weights that correspond to NON-outliers in the original dataset.

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] with weights w = [1,
1.1, 0.9, 1.2, 0.8, 0.2, 0.95, 2] was provided, and only the 37 and -100 were found
to be outliers, then cleanW = [1, 1.1, 0.9, 1.2, 0.8, 0.95].

14 Chapter 3. License and Attribution
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cleanY
list of floats. After performing RCR on some original dataset, these are the datapoints that were NOT
found to be outliers.

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] was provided and only
the 37 and -100 were found to be outliers, then cleanY = [0, 1, -2, 1, 2, 0.5].

flags
list of bools. Ordered flags describing outlier status of each inputted datapoint (True if datapoint is NOT
an outlier).

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] was provided and only
the 37 and -100were found to be outliers, then flags = [True, True, True, True, True,
False, True, False].

indices
list of ints. A list of indices of datapoints from original inputted dataset that are NOT outliers.

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] was provided and only
the 37 and -100 were found to be outliers, then indices = [0, 1, 2, 3, 4, 6].

mu
float. Mean/median/mode (central value) of uncontaminated data distribution.

The central value of the uncontaminated part of the provided dataset, recovered from performing RCR.

originalW
list of floats. The user-provided datapoint weights, pre-RCR.

For example, if a dataset with weights w = [1, 1.1, 0.9, 1.2, 0.8, 0.2, 0.95, 2] was
provided, then originalW = [1, 1.1, 0.9, 1.2, 0.8, 0.2, 0.95, 2].

originalY
list of floats. The user-provided dataset, pre-RCR.

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] was provided, then
originalY = [0, 1, -2, 1, 2, 37, 0.5, -100].

rejectedW
list of floats. The user-provided datapoint weights that correspond to outliers in the original dataset.

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] with weights w = [1,
1.1, 0.9, 1.2, 0.8, 0.2, 0.95, 2] was provided, and only the 37 and -100 were found
to be outliers, then rejectedW = [0.2, 2].

rejectedY
list of floats. After performing RCR on some original dataset, these are the datapoints that WERE found
to be outliers.

For example, if a dataset of y = [0, 1, -2, 1, 2, 37, 0.5, -100] was provided and only
the 37 and -100 were found to be outliers, then rejectedY = [37, -100].

sigma
float. Recovered robust 68.3-percentile deviation of uncontaminated data distribution.

A more robust (less sensitive to outliers) version of the standard deviation/width 𝜎 of the uncontaminated
part of the provided dataset (see Section 2.1 of The Paper), recovered from performing RCR. For the case
of a symmetric uncontaminated data distribution.

sigmaAbove
float. Recovered robust 68.3-percentile deviation abpve mu (mean/median/mode) of uncontaminated data
distribution.

3.1. The Paper 15
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A more robust (less sensitive to outliers) version of the standard deviation/width 𝜎+ of the positive side
of a mildly asymmetric uncontaminated data distribution (see Section 2.1 of The Paper), recovered from
performing RCR. (For the symmetric case, 𝜎+ = 𝜎− ≡ 𝜎).

sigmaBelow
float. Recovered robust 68.3-percentile deviation below mu (mean/median/mode) of uncontaminated data
distribution.

A more robust (less sensitive to outliers) version of the standard deviation/width 𝜎− of the negative side
of a mildly asymmetric uncontaminated data distribution (see Section 2.1 of The Paper), recovered from
performing RCR. (For the symmetric case, 𝜎− = 𝜎+ ≡ 𝜎).

stDev
float. Standard deviation of uncontaminated data distribution.

The standard deviation/width 𝜎 of the uncontaminated part of the provided dataset, recovered from per-
forming RCR. For the case of a symmetric uncontaminated data distribution.

stDevAbove
float. Standard deviation above mu (mean/median/mode) of uncontaminated (asymmetric) data distribu-
tion.

The asymmetric standard deviation/width 𝜎+ of the positive side of a mildly asymmetric uncontaminated
data distribution, recovered from RCR (for the symmetric case, 𝜎+ = 𝜎− ≡ 𝜎).

stDevBelow
float. Standard deviation below mu (mean/median/mode) of uncontaminated (asymmetric) data distribu-
tion.

The asymmetric standard deviation/width 𝜎− of the negative side of a mildly asymmetric uncontaminated
data distribution, recovered from RCR (for the symmetric case, 𝜎− = 𝜎+ ≡ 𝜎).

stDevTotal
float. Combined standard deviation both above and below mu (mean/median/mode) of uncontaminated
(asymmetric) data distribution.

A combination of the asymmetric standard deviation/width 𝜎+ of the positive side of a mildly asymmetric
uncontaminated data distribution and the width 𝜎− of the negative side of the distribution, recovered from
RCR. Can be used to approximate a mildly asymmetric data distribution as symmetric.

class rcr.RejectionTechniques
RCR Standard Rejection Techniques.

Members:

SS_MEDIAN_DL : Rejection technique for a symmetric uncontaminated distribution with two-
sided contaminants.

LS_MODE_68 : Rejection technique for a symmetric uncontaminated distribution with one-sided
contaminants.

LS_MODE_DL : Rejection technique for a symmetric uncontaminated distribution with a mixture
of one-sided and two-sided contaminants.

ES_MODE_DL : Rejection technique for a mildly asymmetric uncontaminated distribution and/or
a very low number of data points.

name

class rcr.priorsTypes
Types of prior probability density functions that can be applied to model parameters.

Members:
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CUSTOM_PRIORS : Custom, function-defined prior probability density functions(s).

GAUSSIAN_PRIORS : Gaussian (normal) prior probability density function(s).

CONSTRAINED_PRIORS : Bounded/hard-constrained prior probability density function(s).

MIXED_PRIORS : A mixture of gaussian (normal), hard-constrained, and uninformative (uni-
form/flat) prior probability density functions.

name

3.1.4 Rejecting 1D Outliers

This page gives a full tutorial for using RCR to detect and reject outliers within one-dimensional datasets. Although
this page avoids unnecessary statistical technicalities (see The Paper), a more bare-bones example is given on the main
page, rcr.

To begin, consider some dataset of 𝑁 measurements, made up of 1) samples from some contaminant distribution
(outliers) and 2) samples from some underlying “true” uncontaminated distribution. RCR has various outlier rejection
techniques that have each been chosen to work best for different shapes of these distributions. The table below
illustrates this.

Table of Rejection Techniques

Best Rejection Technique Uncontaminated (“true”) Distribution Contaminant Distribution
SS_MEDIAN_DL Symmetric Two-Sided/Symmetric
LS_MODE_68 Symmetric One-Sided
LS_MODE_DL Symmetric In-Between One- and Two-Sided
ES_MODE_DL Mildly Asymmetric/Very low 𝑁 (Any)

(Note that an uncontaminated distribution labeled as “symmetric” means approximately Gaussian/normal, mildly
peaked, or mildly flat-topped, meaning an exponential power distribution/generalized normal distribution with positive
and negative kurtosis, respectively.)

For this tutorial, let’s consider the case of both the uncontaminated and contaminated distributions being Gaus-
sian/normal (so then, symmetric), both centered at 𝜇 = 0. Being outliers, we’ll give the contaminated distribution
a standard deviation of 𝜎 = 5, and the uncontaminated distribution 𝜎 = 1. Referring to the table above, this means
that the rejection technique that we’ll need to use is SS_MEDIAN_DL, which we will show how to do shortly. Let’s
arbitrarily choose 𝑁 = 500 datapoints total, with a fraction of 50% contaminated. We can create the dataset in Python
as follows:

import numpy as np

np.random.seed(18318) # get consistent random results

N = 500 # total measurement count
frac_contaminated = 0.5 # fraction of sample that will be contaminated

# symmetric, uncontaminated distribution
mu = 0
sigma_uncontaminated = 1
uncontaminated_samples = np.random.normal(mu, sigma_uncontaminated,

int(N * (1 - frac_contaminated)))

# symmetric, contaminated distribution

(continues on next page)
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sigma_contaminated = 5
contaminated_samples = np.random.normal(mu, sigma_contaminated,

int(N * frac_contaminated))

# combine to create overall dataset
data = np.concatenate((uncontaminated_samples, contaminated_samples))
np.random.shuffle(data)

To see what this dataset looks like, we’ll plot it below (projected randomly along the 𝑦-axis for added visibility).

plot data
import matplotlib.pyplot as plt

plt.figure(figsize=(8,5))
ax = plt.subplot(111)

ydata = np.random.uniform(0, 1, N) # project randomly into 2D for better visualization

ax.plot(contaminated_samples, ydata[:int(N * frac_contaminated)], "k.",
label="Pre-RCR dataset", alpha=0.75, ms=4)

ax.plot(uncontaminated_samples, ydata[int(N * frac_contaminated):], "k.",
alpha=0.75, ms=4)

plt.xlim(-15, 15)
plt.ylim(0, 1)
plt.xlabel("data")
plt.yticks([])

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show()

Output:
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Now, what do we do if we to estimate the 𝜇 and 𝜎 of the underlying uncontaminated distribution? Without RCR, we
get:

# get results pre-RCR
contaminated_mu = np.mean(data)
contaminated_sigma = np.std(data)
print(contaminated_mu, contaminated_sigma)

Output:

-0.3168378799621606 3.792535849537549

Unsurprisingly, the contaminants don’t have a great effect on 𝜇, as both the contaminants and the true distribution have
the same 𝜇 = 0. However, 𝜎 is grossly overestimated due to the contaminants, compared to the expected 𝜎 = 1.

So, how can we use RCR? After importing rcr (see Installation Guide), we initialize the RCR object with the desired
rejection technique; in our case SS_MEDIAN_DL. Next, we perform the outlier rejection (the, recommended, bulk
rejection variant; see What is Bulk Rejection?) using the performBulkRejection() method and the data (as well as
optional weights for the data; see Weighting Data), as follows:

# perform RCR
import rcr

# initialize RCR with rejection technique:
# (chosen from shape of uncontaminated + contaminated distribution)
r = rcr.RCR(rcr.SS_MEDIAN_DL)
r.performBulkRejection(data) # perform outlier rejection

Next, we can obtain the results of RCR with the result member of the RCR class. In our case, we’re interested in
the RCR-recovered values for 𝜇 and 𝜎 of the underlying uncontaminated distribution:
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# View results post-RCR
cleaned_mu = r.result.mu
cleaned_sigma = r.result.stDev
print(cleaned_mu, cleaned_sigma)

Output:

-0.1584668560834893 1.8260572902969874

Successfully, RCR managed to recover both a 𝜇 and 𝜎 that are significantly closer to the true values of 0 and 1,
respectively, both by a factor of about 2.

We can also access the subsets of rejected and nonrejected datapoints of the dataset, as well as the corresponding
indices and flags thereof, from RCR.result. For example, we can plot the post-rejection dataset with:

# plot rejections
cleaned_data = r.result.cleanY

flags = r.result.flags
# list of booleans corresponding to the original dataset,
# true if the corresponding datapoint is not an outlier.

cleaned_data_indices = r.result.indices
# indices of data in original dataset that are not outliers

plt.figure(figsize=(8,5))
ax = plt.subplot(111)
ax.plot(data[cleaned_data_indices], ydata[cleaned_data_indices], "b.",

label="RCR-accepted points", alpha=0.75, ms=4)

plt.xlim(-15, 15)
plt.ylim(0, 1)
plt.xlabel("data")
plt.yticks([])

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show()

Output:
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In the next section, we’ll explore how we can apply weights to datapoints to use with RCR.

Weighting Data

For both single-value/one-dimensional RCR, and the 𝑛-dimensional model-fitting/functional variant (see Rejecting
Outliers While Model Fitting), numerical, non-negative weights can be optionally provided for each of the datapoints.
However, what does it really mean to weight datapoints? If you have some datapoint 𝑦𝑛, giving it a weight of 𝑤𝑛 = 2
is simply analogous to counting it twice. Now, what’s an example of where weighting can be useful?

Lets say that we’d like to perform RCR on the same dataset as above, except now we somehow know a priori that
the true, uncontaminated datapoints should be normally/Gaussian-distributed (again with 𝜇 = 0 and 𝜎 = 1). We
can use this prior knowledge to perform a sort of Bayesian outlier rejection, by giving the datapoints weights that are
proportional to the value of the known normal probability density function. In Python, we can do this simply as:

from scipy.stats import norm

# function to weight each datapoint according to the prior knowledge
def weight_data(datapoint):

return norm.pdf(datapoint, loc=mu, scale=sigma_uncontaminated)

# create weights
weights = weight_data(data)

Next we can perform RCR and view the results as usual, only now providing the weights as the first argument of
performBulkRejection():

# perform RCR; same rejection technique
r = rcr.RCR(rcr.SS_MEDIAN_DL)
r.performBulkRejection(weights, data) # perform outlier rejection, now with weights

(continues on next page)
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# View results post-RCR
cleaned_mu = r.result.mu
cleaned_sigma = r.result.stDev
print(cleaned_mu, cleaned_sigma)

Output:

-0.05519770432617514 0.7825197746126461

This is much closer to the expected values of 𝜇 = 0 and 𝜎 = 1 than what we got with the unweighted/equally-weighted
dataset above (this time actually, 𝜎 was slightly under-estimated).

We can then plot the cleaned dataset/non-rejected data as usual:

# plot rejections
cleaned_data = r.result.cleanY
cleaned_data_indices = r.result.indices

plt.figure(figsize=(8,5))
ax = plt.subplot(111)
ax.plot(data[cleaned_data_indices], ydata[cleaned_data_indices], "b.",

label="RCR-accepted points,\nwith weights applied to data", alpha=0.75, ms=4)

plt.xlim(-15, 15)
plt.ylim(0, 1)
plt.xlabel("data")
plt.yticks([])

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show()

Output:
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As expected, the width of the cleaned dataset is noticeably smaller after applying weights.

3.1.5 Rejecting Outliers While Model Fitting

Introduction

In its most simple form, RCR is an excellent tool for detecting and rejecting outliers within heavily contaminated one-
dimensional datasets, as shown in Rejecting 1D Outliers. However, this only scratches the surface of RCR. In its more
generalized form, RCR can also be used to reject outliers within some 𝑛-dimensional dataset while also simultaneously
fitting a model to that dataset. This section will explain how this can be done fairly easily in practice, while avoiding
going into unnessarily technicalities. We recommend reading Rejecting 1D Outliers before tackling this section, as
the following is essentially a generalization of that section.

For the case of one-dimensional data (see Rejecting 1D Outliers), RCR can be thought of as being used to reject
outliers from some dataset {𝑦𝑖}𝑁𝑖=1, distributed about a single, parameterized “true” value 𝑦. In this case, we often
wish to get a best estimate of 𝑦, in order to properly characterize the underlying measurement distribution; 𝑦 is just a
one-dimensional model that we want to fit to the data, characterized by location and scale parameters like 𝜇 and 𝜎.

If we generalize the dimensionality of this, we can imagine using RCR on measurements distributed about some 𝑛-
dimensional model function 𝑦(�⃗�|𝜃), where �⃗� is an 𝑛-dimensional vector of the model’s independent variable(s), and
𝜃 is an 𝑀 -dimensional vector of the model’s parameters. In this case, we say that 𝑦(�⃗�|𝜃) is an 𝑛-dimensional, 𝑀 -
parameter model. For a more concrete example of this, consider a simple linear model 𝑦 = 𝑏 + 𝑚𝑥. In this case,
𝑛 = 1, and our parameter vector is just 𝜃 = (𝑏,𝑚).

For this more-general case, what does our dataset look like? Each datapoint will be some value of 𝑦(�⃗�|𝜃) associated
with a value for �⃗�. As such, if we have 𝑁 datapoints in total, indexing each by 𝑖, our dataset can be written compactly
as {(�⃗�𝑖, 𝑦𝑖)}𝑁𝑖=1 (be sure to avoid getting 𝑁 confused with 𝑛 here; the former is the number of datapoints that we’re
fitting the model to, while the latter is the dimensionality of the dataset/model).
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Last but not least, before we get into the code, it’s important to point out that in order for RCR to fit any arbitrary model
function to a dataset, (partial) derivatives of the model function with respect to each model parameter must be supplied
(due to the specific algorithm that is used for fitting). For example, consider a one-dimensional exponential model
of the form 𝑦(�⃗�|𝜃) = 𝑏𝑒𝑚𝑥. If we choose to order the model parameters as 𝜃 = (𝑏,𝑚), then our model parameter
derivatives are

𝜕𝑦(�⃗�|𝜃)
𝜕𝑏

= 𝑒𝑚𝑥 and
𝜕𝑦(�⃗�|𝜃)
𝜕𝑚

= 𝑥𝑏𝑒𝑚𝑥.

Implementation

Finally, we have everything that we need to use RCR for outlier rejection during model fitting. Although rcr supports
any arbitrary 𝑛-dimensional nonlinear model function (as long as the model parameter derivatives are well-defined),
for simplicity let’s consider a simple linear model 𝑦(�⃗�|𝜃) = 𝑏+𝑚𝑥. The parameter partial derivatives are then simply

𝜕𝑦(�⃗�|𝜃)
𝜕𝑏

= 1 and
𝜕𝑦(�⃗�|𝜃)
𝜕𝑚

= 𝑥.

Before we start coding, it’s important to consider the following:

Note: Within rcr, model functions and their derivatives must be defined exactly with arguments 1) x and 2) params,
where x is the 𝑛-dimensional list or numpy array (or float, in the case of 𝑛 = 1) of independent variable(s), and
params is the 𝑀 -dimensional list/array of model parameters. Make sure to maintain consistent ordering of the model
parameters vector throughout your code.

Now, onto the code; let’s start by defining our model function and its parameter derivatives:

def linear(x, params): # model function
return params[0] + x * params[1]

def d_linear_1(x, params): # first model parameter derivative
return 1

def d_linear_2(x, params): # second model parameter derivative
return x

Next, let’s start creating our dataset. We’ll have 𝑁 = 200 points total, with 85% of the datapoints being outliers. Our
“true” model that the datapoints will be generated about will have parameters of 𝑏 = 0 and 𝑚 = 1. In code, this is
simply:

import numpy as np

N = 200 # number of datapoints
f = 0.85 # fraction of datapoints that are outliers

params_true = [0, 1] # parameters of "true" model

We’ll generate our datapoints in a certain range of 𝑥 values about the “true” model line. For this example, we’ll
make uncontaminated datapoints that are Gaussian/normally distributed, with standard deviation 𝜎 = 1, about the true
model. In order to highlight the power of RCR with dealing with especially difficult outliers, we’ll generate one-sided
outliers/contaminants, sampled from the positive side of a Gaussian with 𝜎 = 10. In code, this will take the form of:

sigma_uncontaminated = 1 # standard deviations used to generate datapoints
sigma_contaminated = 10

(continues on next page)
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# generate x-datapoints randomly in an interval
x_range = (-10, 10)
xdata_uncontaminated = np.random.uniform(

x_range[0], x_range[1], int(N * (1 - f)))
xdata_contaminated = np.random.uniform(

x_range[0], x_range[1], int(N * f))

# generate y-datapoints about the true model:
# symmetric uncontaminated distribution
ydata_uncontaminated = np.random.normal(

loc=linear(xdata_uncontaminated, params_true),
scale=sigma_uncontaminated
)

# one-sided contaminated distribution
ydata_contaminated = linear(xdata_contaminated, params_true) + np.abs(

np.random.normal(0, sigma_contaminated, int(N * f)))

# combine dataset
xdata = np.concatenate((xdata_contaminated, xdata_uncontaminated))
ydata = np.concatenate((ydata_contaminated, ydata_uncontaminated))

Let’s plot the dataset over the true, underlying model:

# plot dataset
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 5))
ax = plt.subplot(111)

ax.plot(xdata_contaminated, ydata_contaminated, "k.",
label="Pre-RCR dataset", alpha=0.75, ms=4)

ax.plot(xdata_uncontaminated, ydata_uncontaminated, "k.",
alpha=0.75, ms=4)

# plot model
x_model = np.linspace(x_range[0], x_range[1], 1000)
ax.plot(x_model, linear(x_model, params_true),

"b--", label="True model", alpha=0.5, lw=2)

plt.xlim(-10, 10)
plt.ylim(-15, 25)
plt.xlabel("$x$")
plt.ylabel("$y$")

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show()

Output:
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Clearly, these outliers are pretty nasty. This looks like a job for RCR. First, we need to supply an initial guess for the
model parameters, to give the fitting engine within RCR a starting place. Approaching this dataset with no knowledge
of what is or isn’t an outlier, it would be hard to tell what the true best fit should be; as such, we’ll use an initial guess
that naively should work with the data, but is pretty far off of the true values of 𝑏 = 0 and 𝑚 = 1; let’s try 𝑏 = 5 and
𝑚 = 1.5:

guess = [5, 1.5]

Next, we’ll need to initialize the model, as an instance of the rcr.FunctionalForm class. The required arguments
(in order) to construct an instance of this class are 1) the model function, 2) the (𝑛-dimensional) 𝑥-data, 3) the 𝑦-data,
4) a list of the model parameter derivative functions, in order and 5) the guess for the parameters. This is implemented
as:

model = rcr.FunctionalForm(linear,
xdata,
ydata,
[d_linear_1, d_linear_2],
guess

)

Now, we’re finally ready to run RCR on the dataset/model. Our uncontaminated distribution of data is symmetric,
while our contaminated distribution is one-sided/completely asymmetric. Therefore, following the Table of Rejection
Techniques, the rejection technique that will perform best on this dataset is LS_MODE_68. Given this, we’ll perform
RCR as usual, except now, we need to tell our instance of the RCR class that we’re fitting to our specific parametric
model:

r = rcr.RCR(rcr.LS_MODE_68) # setting up for RCR with this rejection technique

r.setParametricModel(model)
# tell RCR that we are model fitting, and give it the model of choice

(continues on next page)
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r.performBulkRejection(ydata) # perform RCR

That was only a few lines of code, but what actually happened here? Essentially, (see The Paper for more details),
RCR can iteratively reject outliers and fit the model to the data at the same time. As such, we can access the same
outlier-rejection results from r.result as in Rejecting 1D Outliers, while also having model-fitting results from our
model, with the member model.result:

best_fit_parameters = model.result.parameters # best fit parameters

rejected_data = r.result.rejectedY # rejected and non-rejected data
nonrejected_data = r.result.cleanY
nonrejected_indices = r.result.indices
# indices from original dataset of nonrejected data

print(best_fit_parameters)

Output:

[1.2367288755077883, 1.004037971689524]

Before we discuss this result, it’s teaching to compare it to the traditional method of ordinary least-squares fitting;
we’ll summarize this in a plot, as follows:

# plot results

plt.figure(figsize=(8, 5))
ax = plt.subplot(111)

ax.plot(xdata_contaminated, ydata_contaminated, "k.",
label="Pre-RCR dataset", alpha=0.75, ms=4)

ax.plot(xdata_uncontaminated, ydata_uncontaminated, "k.",
alpha=0.75, ms=4)

ax.plot(xdata[nonrejected_indices], ydata[nonrejected_indices], "bo",
label="Post-RCR dataset", alpha=0.4, ms=4)

# plot true model
ax.plot(x_model, linear(x_model, params_true),

"b--", label="True model", alpha=0.5, lw=2)

# plot regular linear least squares best fit
from scipy.stats import linregress

slope_lsq, intercept_lsq, _, _, _ = linregress(xdata, ydata)

ax.plot(x_model, linear(x_model, [intercept_lsq, slope_lsq]),
"r-", label="Least-squares best fit", alpha=0.5, lw=2)

# plot RCR-fitted model
ax.plot(x_model, linear(x_model, best_fit_parameters),

"g-", label="RCR best fit", alpha=0.5, lw=2)

plt.xlim(-10, 10)
plt.ylim(-15, 25)

(continues on next page)
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plt.xlabel("$x$")
plt.ylabel("$y$")

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

print("Least-squares fit results:", intercept_lsq, slope_lsq)

plt.show()

Output:

Least-squares fit results:
7.202089027278407 1.0412871059773106

RCR gave us a best fit values of 𝑏 = 1.237 and 𝑚 = 1.004, while traditional linear least squares gave 𝑏 = 7.202 and
𝑚 = 1.041. The slope (true value of 𝑚 = 1) was recovered very well in both cases, but this isn’t super surprising,
given that both the contaminated and uncontaminated measurement distributions were generated without any scatter
along the 𝑥-axis. However, due to the heavy scatter/contamination along the 𝑦-axis, the least-squares result for the
intercept 𝑏 is, expectly, heavily biased by the outliers, very far off of the true value of 𝑏 = 1. However, RCR was able
to successfully reject many of the outliers, while maintaining almost all of the uncontaminated distribution (shown in
blue circles), giving a best fit 𝑏 = 1.237 that is significantly closer to the true value of 𝑏 = 1 than the least-squares
result.

Overall, the RCR fit (green line) is clearly a much better fit (true best fit in blue dashed line) than the least squares best
fit (red line).
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Data with Uncertainties and/or Weights

Realistically, many datasets will have measurements that have uncertainties, or error bars, as practically all physical
measurements cannot truly be made with exact precision. In most model-fitting scenarios, only uncertainties in the
dependent variable (𝑦) are considered, with any uncertainties in the independent variable(s) �⃗� considered to be neg-
ligible (for a more generalized treatment, that includes such �⃗�-uncertainties, as well as uncertainty in the dataset that
cannot solely be attributed to the data error bars, see e.g. Konz 2020). In this case, which we take for RCR, our dataset
becomes {(�⃗�𝑖, 𝑦𝑖 ± 𝜎𝑦,𝑖)}𝑁𝑖=1, i.e. our measurement error bars/uncertainties are {𝜎𝑦,𝑖}𝑁𝑖=1.

Just as in one-dimensional RCR, weights 𝑤𝑖 can also be applied to model-fitting datasets (e.g. Weighting Data). We
note that the inclusion of error bars as described in the previous paragraph is not mutual exclusive with such weighting;
both weights and error bars can be used in practice.

To use a dataset with error bars and/or weights with model-fitting RCR, simply use the optional arguments error_y
and weights of the rcr.FunctionalForm() constructor, where the former is an ordered vector/list of measure-
ment uncertainties {𝜎𝑦,𝑖}𝑁𝑖=1, and the latter is an ordered vector/list of measurement weights {𝑤𝑖}𝑁𝑖=1. An example of
this is given in the following section.

Model Parameter Uncertainties/Error Bars

In many cases, we often want not just best fit parameters for a model and dataset, but also uncertainties, or “error bars”
for these parameters. This is easily available in rcr, again via the model.result object, as model.result.
parameter_uncertainties. However, before we go into a worked code example, note the following:

Note: In rcr, best fit model parameter uncertainties can only be calculated if error bars/uncertainties and/or weights
were given for the dataset before fitting.

Now, let’s try adding error bars to our linear dataset, same as above. First, we’ll initialize the error bars, randomly,
giving higher error, on average, to the contaminants:

error_y_uncontaminated = np.random.uniform(low=0.1, high=1, size=int(N * (1 - f)))
error_y_contaminated = np.random.uniform(low=1, high=2, size=int(N * f))

error_y = np.concatenate((error_y_contaminated, error_y_uncontaminated))

Next, let’s initailize the model as before, except now using the optional keyword argument error_y to input the error
bars. We then can perform RCR as usual.

# instantiate model
model = rcr.FunctionalForm(linear,

xdata,
ydata,
[d_linear_1, d_linear_2],
guess,
error_y=error_y

)

# initialize and perform RCR as usual
r = rcr.RCR(rcr.LS_MODE_68) # setting up for RCR with this rejection technique
r.setParametricModel(model) # tell RCR that we are model fitting
r.performBulkRejection(ydata) # perform RCR

Let’s check out the results:
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# view results
best_fit_parameters = model.result.parameters # best fit parameters
best_fit_parameter_errors = model.result.parameter_uncertainties # and their
→˓uncertainties

rejected_data = r.result.rejectedY # rejected and non-rejected data
nonrejected_data = r.result.cleanY
nonrejected_indices = r.result.indices

print(best_fit_parameters)
print(best_fit_parameter_errors)

Output:

[6.612942587028933, 0.9732622673909074]
[1.6299290812536242, 0.3258511725157285]

So, our RCR-recovered best fit is 𝑏 = 6.61± 1.63 and 𝑚 = 0.973± 0.326. Unfortunately, this fit isn’t nearly as good
as when we didn’t have measurement uncertainties. But why? To see, let’s plot the dataset alongside the fit:

# plot results

plt.figure(figsize=(8, 5))
ax = plt.subplot(111)

ax.errorbar(xdata_contaminated, ydata_contaminated, yerr=error_y_contaminated,
fmt="k.", label="Pre-RCR dataset", alpha=0.75, ms=4)

ax.errorbar(xdata_uncontaminated, ydata_uncontaminated, yerr=error_y_uncontaminated,
fmt="k.", alpha=0.75, ms=4)

ax.plot(xdata[nonrejected_indices], ydata[nonrejected_indices], "bo",
label="Post-RCR dataset", alpha=0.4, ms=4)

# plot true model
ax.plot(x_model, linear(x_model, params_true),

"b--", label="True model", alpha=0.5, lw=2)

# plot RCR-fitted model
ax.plot(x_model, linear(x_model, best_fit_parameters),

"g-", label="RCR best fit", alpha=0.5, lw=2)

plt.xlim(-10, 10)
plt.ylim(-15, 25)
plt.xlabel("$x$")
plt.ylabel("$y$")

box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.65, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show()

Output:
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Adding error bars, or intrinsic uncertainties, to the measurements in the dataset introduced even more overall uncer-
tainty to the data, beyond just the extrinsic uncertainty, or scatter/sample variance of the datapoints themselves. That,
combined with the extremely high contaminant fraction of 85%, made it so that RCR was unable to tell apart the
contaminants from the non-outlier datapoints, under-rejecting the outliers, as shown in the plot. As such, the final
dataset that the model was fit to included too many outliers, biasing the fitted line to have too high an intercept. RCR
would’ve worked better if either/both 1) there were smaller error bars or 2) the fraction of contaminants was lower.

Applying Prior Knowledge to Model Parameters (Advanced)

Let’s say that we want to fit some model to a dataset, and we know certain, prior information about one of the
parameters of the model, 𝑎, in advance. From the point of view of Bayesian inference, this can be formalized by
specifying the prior probability distribution, or prior probability density function (PDF) of that parameter 𝑝(𝑎). For
example, let’s say that for the linear dataset/model above, we know a priori that the intercept 𝑏 should be 𝑏 = 0, with
uncertainty of 1, i.e. 𝑏 = 0± 1. This translates to a prior probability distribution of a Gaussian with mean 𝜇 = 0 and
standard deviation 𝜎 = 1, i.e.

𝑝(𝑏) =
1√
2𝜋

𝑒−
1
2 𝑏

2

.

However, let’s say that we don’t know anything in advance about the slope 𝑚. In this case, we say that the prior on
𝑚 is uninformative, i.e. all values are equally likely (again, this is before we even consider any data), which manifests
mathematically as

𝑝(𝑚) ∝ 1.

In rcr, prior probability distributions can be specified for any or all of the parameters of a model, which will affect
the rejection of outliers (essentially by modifying the rejection probability of certain measurements according to the
prior probabilities of all of the model parameter solutions that these measurements can contribute to). For simplicity
and ease-of-use, we’ve included two types of common priors within the library, as well as allowing for any sort of
custom prior PDF. These options are described in the table below.
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Types of Model Parameter Priors in RCR

Prior Type Parameters Needed To Specify
GAUSSIAN_PRIORS Means and standard deviations of some or all model parameters
CONSTRAINED_PRIORS Lower and/or upper bounds on some or all model parameters
MIXED_PRIORS Combination of some or all of the two above
CUSTOM_PRIORS For some or all model parameters 𝑎𝑗 , custom prior PDF 𝑝(𝑎𝑗)

Now, how can we use these different types of priors in practice?

Gaussian Priors

Let’s say that you want to apply Gaussian/normal prior probability distributions on some (or all) of your model pa-
rameters. To do so, you’ll first need to create a list, where each element of the list corresponds to a model parameter,
and is itself a list of 1) the mean of the Gaussian for that parameter’s prior and 2) the standard deviation of the same.
If no Gaussian prior is desired for a certain parameter, just give NaNs for those fields.

This is pretty dense, so we’ll show a specific instance of this usage. Following the example within the introduction to
this section (Applying Prior Knowledge to Model Parameters (Advanced)), lets use the same linear model as before,
and apply a Gaussian prior to the intercept 𝑏, with mean 𝜇 = 0 and standard deviation 𝜎 = 1. We’ll use no prior
(uninformative) on the slope 𝑚. From here, our list of parameters (not model parameters) that describe the Gaussian
priors will be:

gaussianParams = [
[0, 1], # mu = 0, sigma = 1
[float('nan'), float('nan')]
# no prior on the slope parameter, so just use NaNs

]

Now, to introduce these priors before performing any fitting/RCR, we’ll need to create an instance of the Priors
class from rcr, making sure to specify which type of prior we’re implementing using the correct object from the
above table (in this case GAUSSIAN_PRIORS). Here it is in code:

mypriors = rcr.Priors(rcr.GAUSSIAN_PRIORS, gaussianParams)

From here, RCR can be performed as usual, by 1) supplying the optional argument has_priors=True to the
FunctionalForm constructor when initializing the model, and after that 2) initializing the priors attribute of
your model with your Priors object:, e.g.:

model = rcr.FunctionalForm(linear,
x,
y,
[linear_partial1, linear_partial2],
guess,
has_priors=True

)

model.priors = mypriors

From here RCR can be utilized with this model given the usual methods.
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Constrained/Bounded Priors

Another very common type of prior is to give hard constraints/bounds on certain model parameters. Following the
same linear example, let’s say that we know that the slope 𝑚 of our model should be nonnegative (this type of prior is
often for some physical reason), but we don’t know anything about the intercept 𝑏.

Similar to the usage of Gaussian priors, to implement this we’ll need to create a list where each element corresponds
to a model parameter, and is itself a list of 1) the lower bound and 2) the upper bounds that we want to give the
corresponding parameter if we only want to supply one (or neither) of the bounds, just use a NaN instead. Following
our chosen example, this list can be coded as

paramBounds = [
[float('nan'), float('nan')]
[0, float('nan')] # constrain m > 0

]

Next, we need to instantiate an rcr.Priors object, in a similar manner to the case of Gaussian priors (except now
being sure to specify CONSTRAINED_PRIORS):

mypriors = rcr.Priors(rcr.CONSTRAINED_PRIORS, paramBounds)

Finally, we’ll need to initialize our model with the priors as in the end of the previous section (again with
has_priors=True), and then we’re good to go.

Both Gaussian and/or Constrained (Mixed) Priors

What if we want to apply Gaussian priors to some model parameters, constrained priors to others, or even a mix of both
for certain parameters (e.g. force a parameter to be positive, while also making it Gaussian-distributed)? To do this,
simply create the lists that specify these priors— paramBounds and gaussianParams following the previous
examples—and supply them both to the constructor for your Priors object, making sure to specify the priors type
as MIXED_PRIORS:

mypriors = rcr.Priors(rcr.MIXED_PRIORS, gaussianParams, paramBounds)

From here, RCR can be used as normal, after initializing our model (with has_priors=True) and supplying the
model with the Priors object.

Custom Priors

In the most general case, RCR can work with any type of prior probability distributions/density functions. To im-
plement this, you’ll need a function 𝑝(𝜃) that takes in a vector of model parameters 𝜃, and returns a vector of each
parameter’s prior probability density function evaluated given the corresponding parameter’s value.

As an example, let’s consider that for our linear model, we’d like to 1) place an (unusual) prior on 𝑏:

𝑝(𝑏) = 𝑒−|𝑏| ⃒⃒cos2 𝑏⃒⃒ ,
and 2) constrain 𝑚 to be within the interval (0, 2]. We can then implement 𝑝(𝜃) as:

def prior_pdfs(model_parameters):
pdfs = np.zeros(2) # vector of model parameter density function values
b = model_parameters[0]
pdfs[0] = np.exp(-np.abs(b)) * np.abs(np.cos(b)**2.)

(continues on next page)
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(continued from previous page)

b = model_parameters[0]
pdfs[1] = 1 if 0 < m <= 2 else 0
# p(m) = 0 if m is outside bounds of (0, 2]

return pdfs

After such a 𝑝(𝜃) is defined, we’ll need to use it to instantiate an rcr.Priors object as usual, this time declaring
our type of priors as CUSTOM_PRIORS:

mypriors = rcr.Priors(rcr.CUSTOM_PRIORS, prior_pdfs)

After creating our model (with has_priors=True) and supplying it with our Priors object mypriors, RCR can
then be used as usual.
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